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A mathematical model of a special class of vibration isolation systems is investigated.  The model contains

formal (generalized) functions and reduces to the successive solution of boundary-value problems for

differential equations with coupling conditions, ultimately yielding transcendental equations that can be

solved numerically.  Analytical and numerical solutions for autonomous systems are obtained, providing

a means for the solution of problems in choosing the right parameters for damping systems to satisfy

specified conditions for the normal operation of such systems in the presence of transient or abrupt

inertial forces.

In certain structural units of kinematic vibration isolation systems, friction is introduced, obeying the Coulomb law

(1)

where x(t) is the unknown relative displacement,f(x) is the sliding (rocking) friction coefficient, which is variable in general,

and N = mg is the normal reaction of an oscillator of mass m and stiffness c in the gravitational field, so that the equation of

motion of the oscillator has the form

(2)

where /(t) is the translational acceleration in the direction of motion.  The simplest type of damper provides a rocking or slid-

ing friction force of constant magnitude, i.e.,f(x) = const, but a damper can be constructed with “point” rocking friction

ƒ(x) =
~∆δ(x) or, in the general case, generalized Coulomb friction

(3)

where 
~∆ is expressed in length units, and δ(x) is the Dirac delta function.

The oscillator equation of motion therefore has the form

(4)

where ω2 = c/m and λ is the frequency parameter of the external excitation.  This equation is the main topic of the present arti-

cle, subject to the initial conditions x(0) = 0, ü(0) = V0.

Introducing dimensionless variables with a certain reference lengthH:
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(5)

we can convert Eq.(4) to the dimensionless form

(6)

with the initial conditions

(7)

Specified in the form of (6), the equation of motion does not have a numerical solution and must therefore be trans-

formed into a problem amenable to subsequent solution by known methods.  To that end, we multiply Eq.(6) by x ′(τ) and inte-

grate over a short time interval [τk
+, τk

–], where x(τk) = 0.  Integration yields

(8)

i.e., at the instant of passage through the point x = 0 the magnitude of the oscillator velocity suffers a discontinuity and is sub-

sequently equalto

The sign of the velocity must be chosen to satisfy the condition

otherwise the motion will come to a complete halt.

The following definitions have been used in the derivation of Eq.(8) [1]:

We therefore arrive at the solution of a series of initial-value problems on the intervals [τk–1, τk]  (k = 1, 2, ...), τ0 = 0:

(9)

The limits of the integrals (τk–1, τk) are determined from the condition xk(τk) = 0.
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A solution of Eqs.(9) can be obtained in analytical form on intervals (τk–1,τ k), (τ k, τk) in which the sign of the veloc-

ity does not change, where x ′(τ k) = 0,but the values of the points  τk,τ k can only be found numerically, so that the analytical

form of the solution does not have any particular advantages over a direct numerical approach such as (e.g.) the Runge–Kutta

method.

Free Vibr ations. In this case, we have W(τ /ε) = 0,so that vibrations exist only as the result of a finite initial velocity

V0 ≠ 0, which determines the length parameter H = V0/ω.

The exact solution for f = 0,

indicates the number of cycles xk(t)  (k ≤ N), i.e., the time of motion T to a complete stop:

([a] denotes the integral part of the number a), and the amplitude of the kth cycle (k = 1, 2, …, N) is

so that the square of the amplitude decreases in the time π/ω by a constant amount

An analytical solution for free vibrations without “point” friction (
~∆ = 0) can be obtained analogously.  The solution

of the problem has been published in many books,for example [2],so that only the final implications of the solution will be

given here:

•  A dead zone (zero motion) exists,having a width [–ƒH /p2, ƒH /p2], so that during a “half-period” equal to π/ω in
real time the vibration amplitude decreases by the amount 2ƒg/ω2.

•  For a given velocity V0, the initial vibration amplitude is equalto

so that the number of vibration cycles N is determined by the integral part of the quotient , the total vibra-

tion time is equal to T = (t1 + πN/ω), and the vibration amplitude of the kth cycle is equalto

Consequently, if time is measured from the instant  t1, the duration of the motion with constant friction  f is shorter than

with “point” friction  ∆ = f for  A0 < 1,and this result is more consistent with the real values of V0, ω, and f.  However, this con-

clusion does nothing to diminish the positive significance of point friction, which adds to the constant friction, whose coeffi-

cient f does not exceed0.001.

Forced Vibr ations. In view of the considerable uncertainty of the acceleration W(λt), it is customary to investigate the

reaction of the oscillator to a harmonic excitation of the type W = Asin(λt + ϕ), where the amplitude of the acceleration is given

in fractions of g : A = kg.  If we consider the resonance process  λ = ω, a numerical analysis has shown that “point” friction with

a magnitude  ∆ without the constant friction  f does not support the linear growth of resonance vibrations for all values of ∆ that

allow the initial process of motion.  Constantly activated friction  f for values of  ƒ > πk/4  supports the vibrational process

without growth of the forced vibration amplitude, but then the motion is interrupted by stops,whose duration depends on the
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coefficient  f (without “point” friction).  If both mechanisms are operative, the point friction changes the threshold value of  f

at which resonance occurs, lowering it, but the period of the forced vibrations does not change.

In reality, even if the resonance state of harmonic excitation does occur, it has a finite duration, so that it is always

possible to make the parameter ω characterizing the intrinsic time interval much smaller than the parameter λ characteriz-

ing the forced component,i.e., to make ω = ελ, ε << 1.  Since the solution of the equation of motion has two components

x(t) = x1(ωt) + x2(λt) = x1(τ) + x2(τ /ε), the second term is nonvanishing only in the interval 0 ≤ τ ≤ O(ε) and is described

by the equation

which means that the forced vibrations can be described to within terms O(ε2) by the equation

subject to the initial conditions x2(0) = 0, x′2(0) = 0,so that x1(0) = 0, x′1(0) = V0ε/ω, i.e.,

The equation for  x1(τ)  is the initial equation without the right-hand side, i.e., the component x1(τ) describes free vibra-

tions under the influence of the “initial” velocity from the function x2(z) in the limit  z → ∞, for example  V0 = kg/λ, if we

assume that internal vibrations originate from harmonics of the frequency λ.  The initial conditions for  x1(τ)  are written in the

dimensionless form V0 = kε /p2.

In the final analysis,when the condition  ω/λ << 1 holds,the analysis of the vibrational process entails investigating

the free vibrations of a compliant oscillator; the results can be used to design a damping system with several constraints on the

behavior system as the response to an impulse.

Suppose, for example, that it is required to choose the parameters  f and 
~∆ of a damping system in such a way that

the vibration amplitude will not exceed a certain level  βH, and the motion of the system will terminate upon passing through

the rest position,i.e., x(T) = 0,in the minimum number of free-vibration cycles.  This problem is solved on the basis of the results

obtained above, viz.:

1) the value of βH must be greater than the width of the dead zone:

2) the “initial” velocity V0 = kε /p2 must be greater than :

3) the first vibration amplitude must not be greater thanβH:

4) the first vibration amplitude must not be greater than twice the width of the dead zone:
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5) the velocity through the equilibrium position x1(τ1) = 0 must be smaller than :

By virtue of conditions 3) and 4),the constant sliding friction coefficient  f lies in the interval ƒ2 ≤ ƒ ≤ ƒ3 (for ƒ3 < ƒ1),

imposing an additional constraint on the maximum displacement,since ƒ3 > ƒ2:

(10)

Consequently, once the initial design data are available – the “initial” velocity V0 = kg/λ, the frequency parameter

p2 = cH /mg, and the maximum admissible deviation x = βH, satisfying the constraints (10),the damping parameters can be chosen:

to permit admissible motion of a linear oscillator, which adequately describes a very broad category of vibration isolation sys-

tems,seismic isolation in particular [3].  We note that here “point” friction is an additional condition for normal motion of the

system and can be utilized to stop the vibrational process in the minimum possible time in the presence of a small constant slid-

ing friction.
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